

Sustainable and Resilient Cities: Leveraging Urban Surfaces

Hassan Gholami Associate Professor, City and Regional Planning Group, University of Stavanger Solar, Smart Grid and Storage Advisor, Multiconsult AS

Hassan Gholami

Consultant/Project Manager at Multiconsult | Associate Professor at UiS

Methodology

Assessment

• The urban surfaces significantly influence the quality of life in urban areas and environmental conditions.

Urban climate

- Replacement of natural surfaces with mineral materials
- Extensive use of materials with low albedo
- Loss of green spaces
- High urban densities

Background

Methodology

- Urban heat island effect
- Reduction of outdoor comfort
- Reduction of evapotranspiration
- Entrapment of radiation inside the urban area
- Lower wind velocities (reduced convective heat removal)

Assessment

Habitat & biodiversity

- Import of species for gardening and urban landscaping

Background

Methodology

- Species richness decrement

- Spread of exotic and invasive species, with consequent decrement of native plants diversity

Decreased biodiversity and environmental degradation

Assessment Summary

Urban hydrology

- Urban land sealing and increase in impermeable areas

- Extreme rainfall events

Background

Methodology

Energy

ц

- High temperatures in urban areas

Background

Methodology Assessment

Food

ηſЬ

- Pressure on cities' food system (because of boost in urbanization)

Background

Methodology

Summary Assessment

Fresh water

- Increase of water consumption in urban areas

- Modified global hydrologic cycle and precipitation patterns

Background

Methodology

Summary Assessment

Design of urban surfaces focused on the fulfilment of single longterm purposes

Background

Methodology

Design of urban surfaces focused on the fulfilment of single longterm purposes

Assessment

Methodology

Assessment

Methodology

Opportunity

Assessment

Urban surfaces

Sidewalks	Parking areas	Railways				
een public spaces	Spaces in between buildings	Water bodies				
Balconies	Flat roofs	Tilted- roof				
rve roofs/ ther form						
gy Assessment Summary						

Urban Surface uses

Methedology

Methedology

пДЬ

Summary Assessment

Decision makers/stakeholders/players

Background

Methodology

Assessment

Methodology Assessment Summary

Background

Background

Methodology Summary Assessment

Economic

Lifecycle cost analysis (LCCA): LCCA is a method for assessing the total cost and profit of facility ownership. It takes into account all costs and profits of acquiring, owning, maintaining and disposing steps.

Methodology

Summary Assessment

Economic

Discounted payback period (DPP)

Background

Methodology

LCCA

Internal rate of return (IRR)

Assessment

Economic

пДЬ

environmental risks.

Methodology

Green Economy: An economy that results in improved human well-being and social equity, while significantly reducing

Summary Assessment

Background

Methodology

Assessment

Environmental

different stages of a product's life cycle.

Methodology

Carbon footprint assessment: A carbon footprint assessment measures the total set of GHG that are emitted at

Summary Assessment

Environmental

ηſЬ

Carbon footprint assessment

Background

Methodology Summary Assessment

Environmental: (In) direct effect

	Urban Climate	Habitat and biodiversity preservation	Hydrology and storm water management	Energy self reliance	Food security	Freshwater availability
Green sol.	Direct sun shading Evapotranspiration	Preservation and enhancement of biodiversity	Increment of permeability and water retention	Management of heat exchange	Possibility for urban agrcul. activities	Contribution to restoration of na water cycle
Water sol.	Heat removal (evapotranspiration)	Promotion of local biodiversity	On-site stormwater management (infiltration)		Possibility for aquaculture	Restoration of na water cycle
Urban agric.	Heat removal (evapotranspiration)	Preservation and enhancement of biodiversity	Mitigation of stormwater impact	Decrement of energy in food trans.	Food production as main objective	Contribution to restoration of na water cycle
Cool mat.	Decrement of surface temp.			Reduction of building cooling load		
Renewable en.				On-site RE Production		

Background

Methodolog

gy	Assessment	Summary
----	------------	---------

Technological Feasibility

Suitability matrix

Suitability matrix: Overview of the urban surfaces' suitability for the application of each usage cluster. **/**: suitable.

Surfaces			Green solutions	Water solutions	Urban Agric.	Cool & Innovat.	Ren. En. Sys
Ground	Road network	Roads	1	1	_	✓	1
		Cycle paths	1	1	-	✓	1
		Sidewalks	1	1	-	✓	1
		Parking areas	1	1	-	✓	1
		Railways	1	-	-	-	-
		Tramways	1	-	-	-	-
	Open spaces	Public areas	1	1	-	✓	1
		Green public spaces	1	1	1	-	1
		Spaces in between buildings	1	1	1	✓	1
		Water bodies	1	1	1	-	1
Building	Façades	Opaque surfaces	1	1	1	✓	1
_		Transparent surfaces	1	1	1	-	1
		Balconies	1	-	1	_	1
	Roofs	Flat	1	1	1	✓	1
		Tilted	✓	-	-	✓	1
		Curves / Other forms	✓	-	-	✓	1

Background

Methodology Summary Assessment

stems

Technological Feasibility

Conflicts and synergies matrix

ηſЬ

Methodology Summary Assessment

Background

Conflicts	Integrated solutions	PAR
	O Green roofs	PFR Group
	Edible walls Open-air rooftop farms	
	Bio-solar roofs Multifunctional solar-green roofs/façades	
	Green roofs	
	Rooftop acquaculture Rooftop acquaponics	
	Edible walls Open-air rooftop farms	
	Rooftop acquaculture Rooftop acquaponics	
	Productive façades Rooftop solar greenhouses	
	Cool + PV roof	
	Bio-solar roofs Multifunctional solar-green roofs/façades	
	Productive façades Rooftop solar greenhouses	
	Cool + PV roof	

Assessment

Economic

Criteria

Is the solution economically feasible?

Does the solution advance green economy?

Does the solution enhance entrepreneurship oppo urban area?

Does the solution advance local food/energy/wate

Does the solution improve the vibrancy of the urba

Is the investment signifacantly higher than the oth

Is the plan and implement time long?

• • •

SUM

Background

Methodolog

	Weight	Score	Point (Weight X Score
ortunities in the			
er production?			
an area?			
ner alternatives?			

gy Assessment Summary	
-----------------------	--

Environmental

Criteria

Does the solution reduce fossil fuel consumption?

Does the solution reduce solid waste disposal dema

Will the solution protect local food/energy/water?

Does the soluiton contribute to the heat removal of

Does the soluiton improve biodiversity?

Does the solution contribute to evapotranspiration?

Does the solution improve urban hydrology and stor management?

...

SUM

Background

Methodology Assessment Summary

	Weight	Score	Point (Weight X Score)
nd?			
the urban area?			
rm-water			

Technical

Criteria

Does the soluiton has a proper lifetime?

Is the solution integrable with other solutions?

Is the solution already commercialized?

Is there sufficient area available for the solution?

Does the solution meet standards and regulations (safe

Does the business model of the solution involves sever

Is the solution customizable?

...

SUM

Background

Methodology Assessment Summary

	Weight	Score	Point (Weight X Score)
ety, aesthetic, etc.)?			
al stakeholders?			

Background

Methodology Summary Assessment

Background

Methodology

Assessment

Background

Methodology

Assessment

η

Methodology Assessment

Background

References:

- Sustainable Cities and Society 75: 103313. (2021)
- https://www.carbonfootprint.com/productlifecycle.html, (2021)
- Sylvain Vézina, Cuperlier, Inge https://www.promusa.org/Carbon+footprint+assessment. (2021)
- resources/the-5-principles-of-green-economy. (2021)
- cities." IOP Conference Series: Earth and Environmental Science, IOP Publishing. (2020)
- Environmental Science, IOP Publishing. (2019)

Interpretation of the second secon

Background

Methodology

Silvia Croce, Daniele Vettorato, "Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions."

Carbon Footprint Ltd, "Product Footprint: Services & Tools To Calculate The Environmental Impact Of Your Product."

"Carbon Bergh, footprint Van den assessment."

The Green Economy Coalition. "The 5 Principles of Green Economy." https://www.greeneconomycoalition.org/news-and-

Silvia Croce, Daniele Vettorato, "The definition of urban surface uses: a systemic approach for climate resilient and sustainable

Silvia Croce, et al, "A systemic approach for the optimization of urban surfaces usage." IOP Conference Series: Earth and

References:

- case study in Norway." Solar Energy 211: 488-502. (2020)
- <u>Europe.</u>" Energy 204: 117931. (2020)
- making/MCDA.php. (2021)
- Conferences, EDP Sciences. (2019)
- Giuseppe Munda, <u>"Social multi-criteria evaluation for a sustainable economy</u>." Springer. (2008)
- **□**Future Oxford, <u>"Multi-Criteria Assessment (MCA) Tool.</u> (2021)

Hassan Gholami, et al. "Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden

Hassan Gholami and Harald N. Røstvik, "Economic analysis of BIPV systems as a building envelope material for building skins in

Natural Resources Leadership Institute. "Multi-Criteria Decision Analysis." 2021, from https://projects.ncsu.edu/nrli/decision-

DNS. Jayasena, et al. "Stakeholder analysis for smart city development project: an extensive literature review." MATEC Web of

IM. Santamouris, et al. <u>"Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling</u> potential of mitigation technologies using performance data from 220 large scale projects." Solar Energy 154: 14-33. (2017)

Thank you for your attention!

